Hierarchical isometry properties of hierarchical measurements

نویسندگان

چکیده

A new class of measurement operators, coined hierarchical and prove results guaranteeing the efficient, stable robust recovery hierarchically structured signals from such measurements. We derive bounds on their restricted isometry properties based constants constituent matrices, generalizing extending prior work Kronecker-product As an exemplary application, we apply theory to two communication scenarios. The fast scalable HiHTP algorithm is shown be suitable for solving these types problems its performance evaluated numerically in terms sparse signal block detection capability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical restricted isometry property for Kronecker product measurements

Hierarchically sparse signals and Kronecker product structured measurements arise naturally in a variety of applications. The simplest example of a hierarchical sparsity structure is two-level (s, σ)-hierarchical sparsity which features s-block-sparse signals with σ-sparse blocks. For a large class of algorithms recovery guarantees can be derived based on the restricted isometry property (RIP) ...

متن کامل

Spectral properties of hierarchical

In this text we are interested in spectral properties of discrete Laplace operators deened on lattices based on nitely-ramiied self-similar sets. The basic example is the lattice based on the Sierpinski gasket. We introduce a new renormalization map which appears to be a rational self-map of a compact complex manifolds. We relate some characteristics of its dynamics with some characteristics of...

متن کامل

Topological properties of hierarchical networks.

Hierarchical networks are attracting a renewal interest for modeling the organization of a number of biological systems and for tackling the complexity of statistical mechanical models beyond mean-field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural networks, and spin glasses, recently analyzed from a statistical-mechanics perspective, and we focus on...

متن کامل

Properties of Hierarchical Archimedean Copulas

In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula value, which is particularly useful for tests and constructing ...

متن کامل

HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT

In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and  let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2022

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2021.12.006